20 research outputs found

    Distributed Nonblocking Supervisory Control of Timed Discrete-Event Systems with Communication Delays and Losses

    Full text link
    This paper investigates the problem of distributed nonblocking supervisory control for timed discrete-event systems (DESs). The distributed supervisors communicate with each other over networks subject to nondeterministic communication delays and losses. Given that the delays are counted by time, techniques have been developed to model the dynamics of the communication channels. By incorporating the dynamics of the communication channels into the system model, we construct a communication automaton to model the interaction process between the supervisors. Based on the communication automaton, we define the observation mappings for the supervisors, which consider delays and losses occurring in the communication channels. Then, we derive the necessary and sufficient conditions for the existence of a set of supervisors for distributed nonblocking supervisory control. These conditions are expressed as network controllability, network joint observability, and system language closure. Finally, an example of intelligent manufacturing is provided to show the application of the proposed framework

    Minimization of Sensor Activation in Discrete-Event Systems with Control Delays and Observation Delays

    Full text link
    In discrete-event systems, to save sensor resources, the agent continuously adjusts sensor activation decisions according to a sensor activation policy based on the changing observations. However, new challenges arise for sensor activations in networked discrete-event systems, where observation delays and control delays exist between the sensor systems and the agent. In this paper, a new framework for activating sensors in networked discrete-event systems is established. In this framework, we construct a communication automaton that explicitly expresses the interaction process between the agent and the sensor systems over the observation channel and the control channel. Based on the communication automaton, we can define dynamic observations of a communicated string. To guarantee that a sensor activation policy is physically implementable and insensitive to random control delays and observation delays, we further introduce the definition of delay feasibility. We show that a delay feasible sensor activation policy can be used to dynamically activate sensors even if control delays and observation delays exist. A set of algorithms are developed to minimize sensor activations in a transition-based domain while ensuring a given specification condition is satisfied. A practical example is provided to show the application of the developed sensor activation methods. Finally, we briefly discuss how to extend the proposed framework to a decentralized sensing architecture

    An Algorithm to Automatically Detect the Smale Horseshoes

    Get PDF
    Smale horseshoes, curvilinear rectangles and their U-shaped images patterned on Smale's famous example, provide a rigorous way to study chaos in dynamical systems. The paper is devoted to constructing them in two-dimensional diffeomorphisms with the existence of transversal homoclinic saddles. We first propose an algorithm to automatically construct “horizontal” and “vertical” sides of the curvilinear rectangle near to segments of the stable and of the unstable manifolds, respectively, and then apply it to four classical chaotic maps (the Duffing map, the Hénon map, the Ikeda map, and the Lozi map) to verify its effectiveness

    Simple hyperchaotic memory system with large topological entropy

    Get PDF
    The memory elements have been the research hot spot for a long time. However, there is a litter works on the linear memory element. This paper presents a study of a new memory system containing a linear memory element. The study shows that the system not only has two kinds of route to hyperchaos, but also exists many kinds of coexisting attractors in the phase space. Moreover, the system can generate more complex hyperchaotic behaviors. To prove it, we find a new kind of topological horseshoes with two-directional expansions that consist of three disconnected compact sets. This new kind of horseshoes suggests that the topological entropy of the hyperchaotic attractor is larger than other hyperchaotic attractors reported before. For detailed study of the hyperchaotic invariant set, we also demonstrate a method to extract the orbits from the hyperchaotic horseshoes

    Remote collaborative process optimization in research and design of industrial manufacturing

    No full text
    Abstract In response to the impact of COVID-19, the manufacturing industry and academic industrial research have largely shifted to online or hybrid conference formats. The sudden change has posed challenges for researchers and teams to adapt. Based on the current state of online conferences, inadequate communication, disruptions during meetings, confusion and loss of meeting information, and difficulties in conducting online collaborations are observed. This paper presents a design of a real-time discussion board that combines online conferences and synchronous discussions to address the issues arising from remote collaborations in industrial research. The research demonstrates that synchronous discussions conducted within multi-team industrial collaboration teams with specific and diverse issues can better control the flow of meetings, enhance meeting efficiency, promote participant interaction and engagement, reduce information loss, and weaken the boundaries between online and offline collaboration

    A 3D Smale Horseshoe in a Hyperchaotic Discrete-Time System

    Get PDF
    This paper presents a three-dimensional topological horseshoe in the hyperchaotic generalized HĂ©non map. It looks like a planar Smale horseshoe with an additional vertical expansion, so we call it 3D Smale horseshoe. In this way, a computer assisted verification of existence of hyperchaos is provided by means of interval analysis

    Modeling and Optimal Supervisory Control of Networked Discrete-Event Systems and Their Application in Traffic Management

    No full text
    In this paper, we investigate the modeling and control of networked discrete-event systems (DESs), where a supervisor is connected to the plant via an observation channel and the control commands issued by the supervisor are delivered to the actuator of the plant via a control channel. Communication delays exist in both the observation channel and the control channel. First, a novel modeling framework for the supervisory control of DESs subject to observation delays and control delays is presented. The framework explicitly models the interaction process between the plant and the supervisor over the communication channels. Compared with the previous work, a more accurate “dynamics” of the closed-loop system is specified. Under this framework, we further discuss how to estimate the states of the closed-loop system in the presence of observation delays and control delays. Based on the state estimation, we synthesize an optimal supervisor on the fly to maximize the controlled behaviors while preventing the system from leaving the desired behaviors under communication delays. We compare the proposed supervisor with the supervisor proposed in the literature and show that the proposed supervisor is more permissive. As an application, we show how the proposed approach can be applied to manage vehicles in a signal intersection. Finally, we show how to extend the proposed framework to model a system whose actuators and sensors are distributed at different sites

    Sequence of Routes to Chaos in a Lorenz-Type System

    No full text
    This paper reports a new bifurcation pattern observed in a Lorenz-type system. The pattern is composed of a main bifurcation route to chaos (n=1) and a sequence of sub-bifurcation routes with n=3,4,5,…,14 isolated sub-branches to chaos. When n is odd, the n isolated sub-branches are from a period-n limit cycle, followed by twin period-n limit cycles via a pitchfork bifurcation, twin chaotic attractors via period-doubling bifurcations, and a symmetric chaotic attractor via boundary crisis. When n is even, the n isolated sub-branches are from twin period-n/2 limit cycles, which become twin chaotic attractors via period-doubling bifurcations. The paper also shows that the main route and the sub-routes can coexist peacefully by studying basins of attraction
    corecore